Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation.
نویسندگان
چکیده
Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation.
منابع مشابه
Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2.
Ethylene plays important roles in plant growth, development, and stress responses. Two ethylene receptors, ETR1 from Arabidopsis and NTHK1 from tobacco (Nicotiana tabacum), have been found to have His kinase (HK) activity and Ser/Thr kinase activity, respectively, although both show similarity to bacterial two-component HK. Here, we report the characterization of another ethylene receptor homol...
متن کاملHomoplasmic Stability and Cytoplasmic Inheritence of DARPin G3 Scaffold Protein in Generative and Vegetative Propagation of Transplastoic Tobacco Plants
Plastid engineering gives numerous benefits for the next generation of transgenic technology, consisting of the convenient use of transgene stacking and the production of high expression levels of recombinant proteins. Designed ankyrin repeat proteins (DARPin) are relatively small non-immunoglobulin scaffold proteins that bind to their specific target with high affinity. The G3 is a type of DAR...
متن کاملLong distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2) mRNA and protein in tobacco
Translationally Controlled Tumor Protein (TCTP) is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external si...
متن کاملThe protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco.
The 6b gene in the T-DNA from Agrobacterium has oncogenic activity in plant cells, inducing tumor formation, the phytohormone-independent division of cells, and alterations in leaf morphology. The product of the 6b gene appears to promote some aspects of the proliferation of plant cells, but the molecular mechanism of its action remains unknown. We report here that the 6b protein associates wit...
متن کاملOverexpression of SIPK in tobacco enhances ozone-induced ethylene formation and blocks ozone-induced SA accumulation.
Ozone induces rapid activation of SIPK, a mitogen-activated protein kinase (MAPK) in tobacco. Through transgenic manipulation it has previously been shown that overexpression of SIPK leads to enhanced ozone-induced lesion formation with concomitant accumulation of ROS. In spite of this hypersensitive phenotype, the effect of this altered SIPK expression on the levels of various hormones that re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 169 1 شماره
صفحات -
تاریخ انتشار 2015